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SITE MODEL BASED IMAGE REGISTRATION 
AND CHANGE DETECTION 

1.    INTRODUCTION 
The overriding concern of RADIUS research has been the development of algorithms for 
model-based and context-based exploitation of aerial imagery. The context-based 
exploitation paradigm has proven to be important for the design of less complex and 
more robust change detection and monitoring tools. Change detection (CD) and 
monitoring, with the goals of locating and identifying significant changes or relevant 
activities that have occurred between the times of acquisition of the imagery, are core 
aerial image analysis operations (Strat and Climenson, 1994). Previous efforts 
(Kawamura, 1971; Price, 1982; Ulstad, 1973) have relied on general purpose methods to 
screen a variety of imagery without access to any site-specific information. Methods 
such as these have proven to be unreliable because too many inconsequential changes 
occur in any natural environment; therefore, monitoring techniques based on more or 
less sophisticated and sometimes low-level pixel-based methods are extremely sensitive 
to registration errors and photometric conditions. Even if general-purpose methods 
could be developed for screening out all changes due to variations in viewpoint and 
illumination, many differences between the images would still be present whose 
significance could only be determined by an image analyst (IA) with comprehensive site 
knowledge. 

The model-based detection schemes presented in this report incorporate Image 
Understanding (IU) techniques that can be directed by the IA to conduct 
spatially-constrained analyses, whose outcomes may be indicative of occurrences of 
change with special intelligence significance. The aerial image exploitation system is 
site model driven, and is generally based on three classes of primitives: object 
primitives, which correspond to the specific objects that occur in a particular site model 
and to the generic object classes supported by the IU system; spatial primitives, for the 
construction of search locales and the specification of constraints on the search for 
object types within locales; and temporal primitives, which can constrain or 
parameterize the analysis by factors such as time of day, day of week, time of year, etc. 
This work emphasizes the use of geometric (i.e., object and spatial) primitives. These 
take the form of site models implemented in the RADIUS Common Development 
Environment (RCDE) (SRI, 1993). The models encode the spatial relationships 
between fixed objects of interest in a site, such as buildings, roads, etc. 

IU algorithms, designed to extract objects such as buildings or vehicles in a site for CD 
applications, cannot be purely bottom up. Site models are instrumental in enabling the 
incorporation of feedback mechanisms into IU algorithms 
(Bejanin et al, 1994; Collins et ah, 1994; McKeown and Roux, 1994). For example, in 
extracting buildings (Venkateswar and Chellappa, 1992), heuristics based on the 
expected shapes of roofs (site-specific information) are employed for completing any 
partial roof hypotheses that result from imperfect bottom-up processing. Likewise, 
shadow analysis is important for obtaining height information 



(Huertas and Nevatia, 1988; McKeown, 1990), or allowing the IU system to explain 
why some building features that are in the field of view cannot be identified in the 
image. Similarly, site models can provide geometric and photometric constraints that 
reduce matching ambiguities or search spaces; therefore, the use of site model 
information increases the reliability and decreases the complexity of IU processes. 

Among the problems addressed in the RADIUS research, three main areas of interest 
have been singled out as critical for the project: construction of site models, automated 
positioning of images, and monitoring of movable objects. The focus of our group has 
been on monitoring movable objects. More specifically, we have addressed the following 
two tasks: (a) detecting and counting vehicles in selected locales, and (b) monitoring 
and characterizting vehicle groupings. 

In contrast to earlier CD techniques (Kawamura, 1971; Price, 1982; Ulstad, 1973), we 
are using model-based detection schemes 
(Bejanin et a/., 1994; Collins et a/., 1994; Huertas and Nevatia, 1988) 
(McKeown and Roux, 1994; McKeown, 1990) that exploit known geometric models. 
Different approaches have been employed based on the task at hand: An analytical 
recognition scheme is used for task (a) and a global method using spectral analysis is 
employed for task (b). Site model information is incorporated in different ways and to 
various extents according to the selected detection strategy. The emphasis in what 
follows is on providing a general description of our system, its components, and 
integration issues. 

The vehicle detection and counting tool was originally developed to illustrate the Model 
Supported Exploitation (MSE) approach and the use of locale and object model 
information. Vehicles have simple box-like 3-D models with specified dimensions. A 
modified Canny edge detector (Venkateswar and Chellappa, 1992) is used to detect 
edges and gradient directions. A modified generalized Hough transform is used to 
locate candidate vehicles. For each candidate rectangle obtained, a rubberband 
template is generated by the 3-D vehicle model and compared with a local edge map. 
Lastly, a shadow verification method is used to confirm the detection of vehicles. 
Three-dimensional object model and site information (camera model, illuminant, etc.) 
is exploited throughout the detection and counting procedure. 

The module for detecting vehicle configuration illustrates the use of spectral information 
derived from spatial models. The purpose of this module is principally to serve as an 
attentional mechanism for detecting object configurations of particular significance. 
This operator is applied to detecting the presence of convoys on roads, occupancy of 
parking areas, regular vehicle formations in staging areas, and trains on rails. The 
problem of detecting geometrical configurations has been reported in papers such as 
(Bronskill et a/., 1989; Khang and Robins, 1991; Xu, 1988), using knowledge-based 
association or Hough transform schemes. Our method uses a frequency domain 
approach. We look at the spectral representation associated with directional edges (in 
dominant directions over an area) to determine any periodic behavior of this underlying 



structure. This method uses available site model information and enforces constraints 
derived from object model geometry in the frequency domain. This operator is used 
stand alone or as a pre-processor to the local detection and counting module. 

An important part of our work has been assessing the sensitivity of the detection 
modules to tuning parameters and site model information. Since these algorithms are 
to be used by IAs in a batch mode over large sets of images, we have provided means to 
incorporate automatic tuning and training mechanisms into our modules, thereby 
avoiding manual parameter tuning as much as possible. 

Another important facet of our work has been system integration within the RCDE. 
One of the principal thrusts behind this research has been the development of IU 
capabilities focused on the needs of IAs. To this end, the mechanisms previously 
described have been developed within or around the RCDE platform, making heavy use 
of its integrated functionalities; this platform provides a common development 
environment on which RADIUS-related algorithms can be developed and tested, and 
allows for the creation and manipulation of CAD-like objects used to model site 
objects. It also provides a framework from which the RADIUS testbed system is 
derived. A typical exploitation cycle in this platform involves the following steps: new 
images are acquired, and they are registered to the existing site model. Images then are 
prioritized for further analysis. The IA launches a set of batch detection algorithms; the 
user specifies from the site model which areas of interest should be considered for 
exploitation. The needed locale and object information is fetched from site objects 
residing in a database. The successive steps involved in the exploitation cycle — 
registration, resection, enhancement, and detection — are implemented in or around 
RCDE. Integration into RCDE has enabled successful porting of site data and 
algorithms. 

This report is organized as follows: Section 2. gives a detailed overview of 
site-model-based CD as well as the specific type of site model information used by each 
CD process described subsequently. The model-based approach to detection and 
counting of vehicles is reported in Section 3. The detection of convoys and vehicle 
formations is reported in Section 4. Experimental results using real imagery are reported 
in each of these sections. Sensitivity analysis and the statistical characterization of the 
algorithms' performance, as well as issues related to parameter training, are presented 
in Section 5. Finally, issues dealing with integration are reported in Section 6.. 



2.    SITE MODEL SUPPORTED MONITORING 
A core component of MSE is the availability of site models. A site model contains a 
geometrical description of the site under scrutiny and of relevant site features (areas, 
buildings, roads, etc.); it also includes imaging and photometric parameters associated 
with the available images along with collateral and auxiliary information (ARPA, 
1993). Typical auxiliary information associated with a site model includes: (a) an 
overview of the site, (b) a baseline description, and (c) comments and analysis tasks. 
Site model construction requires several overlapping coverage images of the same site; it 
is carried out under RCDE. 

When a newly acquired image becomes available, its registration to the existing site 
model is a necessary condition for model-based exploitation. As mentioned earlier, 
depending on the particular exploitation task, e.g., if building- or vehicle-related 
activities are monitored, we can use the site model and viewing direction of the new 
image to identify regions in the image that need further analysis. We subsequently can 
invoke the necessary IU algorithms for detecting and monitoring construction activities, 
as well as for locating and counting vehicles (and road extraction, if construction of 
roads is being monitored). 

Perhaps one of the most obvious ways in which site models are used is in the 
delineation of Regions of Interest (ROIs). Given an image to be exploited, locating the 
regions of interest according to the task narrows the search area and reduces 
computational complexity and false alarms. Delineation not only decreases complexity, 
but also ensures the success of algorithms which otherwise might fail. Finally, using 
context in delineation allows for recognition by function, since location is a determinant 
factor in the ultimate purpose or function of an object. This is especially critical in 
applications where target signatures do not allow for easy object discrimination, such as 
in SAR images. The delineation process is straightforward in nature: when a 3-D region 
object is available from the site model, we directly project the region boundaries onto 
the image to label the region(s) in the image domain. The method uses camera model 
information available from the site model. The delineated region is then further cropped 
for possible shadows and/or occlusions, again exploiting site model information. 

In addition to using site and camera information to delineate ROIs, the bulk of the site 
model information used by each detection algorithm is geometric in nature. Vehicle 
dimensions and orientation are used to infer template dimensions and orientation in the 
vehicle detection scheme. Selection of templates can be decided from a knowledge of 
the parking lot occupancy (in a full parking lot, the vehicle sides are likely to be 
occluded). This can be in the form of priors using context information, or this 
information can be fed back from the convoy detector. Information on climatic/weather 
conditions is not exploited here but evidently could explain the strengths of brightness 
gradients; this could be used either for tuning purposes or to quantify the confidence in 
the detected changes. The availability of CAD-like models for the visible objects allows 
for the application of syntactic object recognition techniques. Illumination direction is 
used along with camera parameters and object descriptions in the construction 



monitoring module to check for the presence of shadows corroborating the detected 
vertical lines. Contextual information also is used in the RCDE system to guide the 
application of exploitation algorithms. Conditions for which an algorithm's 
performance is acceptable can be encoded as rules embedded in a production system 
encoded in Prolog (Strat, 1995). Context information then is used to trigger the 
application of the algorithm deemed most appropriate for the task at hand. 



3.    VEHICLE DETECTION AND COUNTING 
The vehicle detector can be triggered or cued by the convoy detector (see Section 4.) or 
can be used independently to monitor areas such as parking lots, roads, or training 
grounds. The general vehicle detection scheme relies on contour matching using 
information derived from the geometric model. The procedures used to carry out 
vehicle detection are reported in this section. 

Since, in our implementation, we are primarily concerned with high-altitude imagery, 
vehicles are modeled as 3-D box-like objects with given width, length, and height 
specifications. The implementation of our vehicle detector consists of a pre-screener, an 
extractor and a verifier. Throughout the detection procedure, 3-D object models and 
site information (camera model, illuminant, etc.) are used. Details of the three stages 
of the vehicle detection process are now described. 

3.1 Edge Detection and Prescreener 
Edge detection is implemented by a modified version of the Canny edge detector. In 
particular, computations are limited to ROIs where the detection is carried out. 

A modified generalized Hough transform (GHT) is used to locate areas corresponding 
to the center of candidate vehicles. The goal is to have edge pixels vote for possible loci 
of reference points. In our case, the reference point of an edge pixel is the center of a 
vehicle contour that contains the pixel. The displacement vector from any edge pixel to 
its reference point is represented using polar coordinates, indexed by the gradient 
direction of the edge pixel. The pre-screening algorithm can be described as follows: 
edge pixels are first extracted using the Canny edge detector. Both gradient magnitude 
and gradient direction are computed. A Hough table then is constructed for all vehicle 
templates. An accumulator array of possible reference points is created, and initialized 
to zero. For an edge pixel (x, y), we use its gradient direction <j> to retrieve its 
associated displacement vectors from the Hough table and derive the positions of all 
possible reference points; thus, each edge pixel casts its vote for all reference points 
(xc,yc), where 

xc   =   x + r(<f))cos[a(<i))], 

Vc   =   y + r((f>)sm[a(<f>)}- 

The result of this step is a set of hypothesized vehicle centers, £. Each point in the set 
C represents the center of a possible vehicle that has a match ratio (between its 
boundary contour and edge map) above a predetermined conservative threshold. Since 
we adopt a threshold scheme instead of searching for peaks in Hough space, we proceed 
with the detailed examination of vehicle contours. 

3.2 Extractor 
We subsequently apply local "rubberband" contour matching. This stage consists of 
four steps: (1) determining the positions and orientations of 3-D vehicle models; (2) 
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computing contours of the 3-D models; (3) computing textural features, and combining 
the features into a discrimination statistic that measures how "target-like" the detected 
object is; and (4) clustering into geometrically consistent objects. The algorithm first 
derives the positions and orientations of 3-D models. Centers of 3-D models need to be 
consistent with the back-projections of points in C. Their orientations also are 
constrained to lie along the dominant direction of the active area. 

For matching purposes, rubberband matching is used instead of tolerance band 
matching. The major disadvantage of tolerance-band matching is that it repetitively 
counts all pixels within tolerance bands. On the other hand, rubberband contours are 
deformable and will not overrate pixels clustered along the directions normal to the 
template contours. In addition, the degree of matching is evaluated separately on the 
vehicles' boundaries so that, to qualify as a vehicle, the target needs to have a sufficient 
support boundary on both sides of the vehicle. 

When the configuration detection module is used as a pre-processor, all points in C at 
which templates match sets of edge pixels sufficiently closely are declared the centers of 
candidate targets. 

Candidate points need to be further examined to verify that vehicles centered at these 
locations are geometrically consistent. The selection of competing points is carried out 
using textural information. During this stage, three textural features are computed for 
each candidate: (1) the mean value; (2) the standard deviation; and (3) the maximum 
of the intensity distribution of the pixels lying within the target-sized template. When 
two hypothesized vehicles are geometrically inconsistent, e.g., overlapping, the one 
having the higher quality measure survives. The quality measure is a weighted sum of 
the quality of the contour match and the similarity of the statistics to the reference 
statistics. The reference statistics are computed based on those of highly matched 
targets. The similarity of statistics is calculated by inverting a quadratic distance 
measure. At this step, most of the false alarms are rejected due to either a large 
quadratic distance or bad contour quality. 

3.3    Verifier 
The verifying stage primarily involves shadow verification. All recognition techniques 
suffer from the ambiguity existing between similar 2-D shapes arising from the contours 
of different 3-D objects. One way to avoid this problem is to use shadow information. 
Since shadows only accompany 3-D objects, false alarms can be minimized by checking 
for the existence of a shadow within a predicted region. A shadow has a high contrast 
and darker intensity than the background, and its size can be predicted using the 
vehicle orientation, viewing direction, and illumination direction. In our 
implementation, we use an enhancement process and a region growing process that 
segments an image into regions based on the intensity differences between connected 
components (Rodriguez, 1994). The resulting region segments are used to verify the 
existence of vehicle shadows. Detection is declared if there exist segments that comprise 
a region satisfying the following constraints: Size constraint: The size is computed by 



projecting the object model onto the ground plane. The portion of the shadow visible 
from the viewing direction is then computed. Intensity constraint: The shadow region is 
both homogeneous and dark. In other words, both the deviation and the mean value of 
the intensity distribution are small. Position constraint: The shadow position is 
consistent with the illumination direction. Shape constraint: The shadow can be on 
either one or two consecutive sides of the vehicle. 

3.4 Detection on Long Roads 
IU algorithms often fail to consider actual operational conditions where very large 
images are used. These images call for specific computational and sometimes 
algorithmic solutions. We have addressed this problem in the context of vehicle 
detection on long roads. To this end, site model information in the form of the road 
model is fed back to the low-level processing stages. More specifically, the Canny edge 
detection module is modified to perform filtering, gradient computation, non-maxima 
suppression, and hysteresis thresholding only on masked regions. Further improvements 
in speed using block processing of image chips extracted from the roads are being 
considered. Lastly, template specifications for a long road will take into account the 
fact that vehicles are often isolated, while some edges in parking lots are occluded. 

3.5 Experiments 
Detection results on Ft. Hood and TEC parking lots are given in Figures 1 and 2. The 
vehicle detector is used to infer historical trends, detect changes, or to implement 
negation mechanisms by which an IA can query the earliest date on which a significant 
event occurred (for example, the number of vehicles exceeding a given threshold). 
Change detection is illustrated with Ft. Hood images in Figure 1. Figure 1(a) shows an 
old image of a parking lot. Figure 1(b) shows the vehicles detected in Figure 1(a). 
Figure 1(c) shows an image of the same parking lot taken at a later date in the new Ft. 
Hood site. Figure 1(d) shows the vehicles detected in Figure 1(c). Similar detection 
results are shown for the Denver site in Figure 2. Finally, results of the application of 
the long road monitor to the old and new Ft. Hood images are shown in Figure 3. 



4.    DETECTION OF VEHICLE GROUPINGS 
This module can be used as a tool for globally assessing the degree to which a parking 
lot is full, or determining the presence of platoons or convoys along roads. It is 
primarily intended as an attentional mechanism. This tool is based on the detection of 
special vehicle configurations—more specifically, those configurations that exhibit a 
periodic behavior. This module is of particular interest since it enables one to look 
globally for activity in an entire area. It also may serve as a pre-processing step to the 
local vehicle detection scheme. 

Partial or complete prior information in the form of site and object models are used to 
infer information about the object geometry, the object grouping configuration 
geometry, or the hypothesized locations or ROIs that may include such configurations. 
Generic ROIs are either 1-D, and modeled as ribbons (e.g. road, railroad, landing strip, 
river, etc.), or 2-D, and modeled as regions (e.g., parking lot, open area, etc.). The 
detection of regular and periodic structures are carried out either by spectral analysis of 
the brightness intensity directional derivative in the 1-D case, or analysis of the 
gradient magnitude in the 2-D case. In the case of ribbons, the directional derivative is 
computed. Evidence of a specific periodic structure is found by searching for a peak 
within a frequency window, referred to as a compliance window derived from known 
object model constraints. The 2-D case is similar but yields compliance regions that 
entail the use of various search strategies depending on the type of prior information 
available about the configuration geometry and object geometry. The observation space 
for the detection rule includes the peak absolute spectrum magnitude and its value 
relative to its median computed within a specified frequency window. Acceptance 
regions are derived by using a decision-theoretic approach by exploiting a set of training 
images. These ideas are expanded and formalized in this section. 

4.1    Characterization 
Consider first the 1-D case where ROIs are represented by ribbons in the image. Let r 
denote the image position of a point. Assume that a ribbon's skeleton describes a 
smooth curve C, given by re(s), the image point position as a function of the curvilinear 
abscissa 5. Let N(s) and T(s) be the normal and tangent vectors to C at Tc(s). The 
ribbon R characterized by width W(s) at re(s) is defined by the set of points satisfying 

R = {r : r € L(s)} 

with L(s) the set defined as 

, N  ^     /    W(s)  W(s)„ 
{r : r = AN(s) + rc(a), A € ( ^, -f+)}- 

Construct k(s), the directional derivative DTI(T) of the brightness intensity 7(r) 
averaged along the width of the ribbon: 

k(s)= I       drDTI(r)/W(s) 
JreL(s) 



Periodically organized objects are detected from spectral analysis of directional edges 
k(s). Let K(f) = F[k\f] denote the Fourier transform  (FT) of k(s). Consider the 
occurrence of periodically situated objects, such as a road convoy, vehicles parked in a 
parking lot, or railroad cars on tracks. These are represented by a replicated function 
c(.) - derived from the directional derivative profile of the object - within a window of 
length p, as 

s ~1"00 

k(s) = rect(-)([c(.) *£*(•- n/f*)](s)), (1) 
" n=—oo 

with rect(x) = 1 if |z| < 1/2 and 0 if \x\ > 1/2, for which K(f) equals 

+0O 

i<(f)=p sinc(. x p) * (c(.)/* E *(■ - *r)) (/) • 
n=—oo 

Periodic edge structure is characterized by detecting peaks and their corresponding 
harmonics from the amplitude spectrum \K(f)\. The problem is to recognize this 
spectrum when an additive clutter noise component is present, i.e., for 
k'(s) = k(s) + n(s). The strategy used reliably to measure this occurrence is described 
in Section 4.3. 

The 2-D case allows for many possible object configuration scenarios (as shown in 
Figures 4 and 5) and is relevant for analyzing situations involving regular object 
configurations in open areas. Let k(r) = || V7(r) ||, the gradient magnitude at r, and 
consider the 2-D-FT, 

K(f) = F[k\f] = J £°° dr k{r) exp -i27rrrf, 

with f = [/o, /i]r. Consider a grouping of objects with arbitrary replications and 
orientation (see Figure 6); their gradient magnitude is described by 

Mr) = X>(R-nr-vn), (2) 
n 

with vn and R^ respectively denoting an arbitrary 2-D translation vector and rotation 
matrix. Since 

F[x{Ar)\f\ = \det{A)\-1F[x{r)\A-Tf] 

then with &(r) as in Equation (2) we have 

K(f) = Eexp(-i27rvjRWnf)F[c(.)|R[l,nf]. 

If the objects satisfy periodic configurations, i.e., the directions and intervals of 
replication are given by the vectors v0 and vx (see Figure 6), with 

Vn = »V0+jVi, 

10 



and the objects have identical orientations, i.e., RWn = Rw, within a support area A, 
then k(r) becomes 

fc(r) = I^rXKR«.) * comb2(v0)Vl)(.)] (r)), 

with TA{Y) denoting the indicator function over A, comb2(V0;Vl)(r) = £n % + Vn), and 
n = [i, j]T. Its resulting spectral representation is (Dudgeon and Mersereau, 1984) 

K(f) = [IA(.) * (<?(R„.) Comb2(V0,Vl)(.))] (f), 

where IA(-) — .F[£i|f], and Comb2(VOiVl)(f) satisfies 

Comb2(vo,Vl)(f) = d^v) E<^(f " (V-1)^). 

where V is the 2-D periodicity matrix with columns composed by the v,-'s, i = 0,1, with 
det(v0, vi) = det(V) ^ 0. This situation describes, by simple selection of the shape of 
the support region A, a wide array of configurations of special interest such as circular, 
semicircular, wedge, pyramid, block or linear formations (see Figure 7). As in the 1-D 
case, a periodic configuration can be detected by searching for its corresponding 2-D 
base and harmonic peaks whose positions are given by the frequency domain periodicity 
matrix U = V~T. The rule for reliably detecting such peaks in the presence of noise is 
described in Section 4.3. 

4.2    Spectral Searches on Compliance Windows 
Constraints on 3-D geometrical objects and configuration models yield spectral 
compliance windows where dominant components characteristic of certain types of 
regular configurations can be searched. Let /* denote the base component arising as a 
result of a regular object formation on a ribbon. Knowledge of the object geometry and 
context enables us to derive bounds on the positions of the peaks: Knowledge of the 
average object length / taken on the image region covered by the ribbon is derived from 
the known object model and the camera orientation parameters. Context also allows for 
knowledge of the minimum (1 + t)l as well as maximum (1 + n)l replication distance of 
this object. /* must lie within a spectral compliance window Wc, defined as 
Wc = [,* „, ,* w]. A regular structure is hypothesized if a peak is found at frequency 
/*, also referred to here as the base or dominant spectral component: 

f* = argmax(|#(/)|),   where / G Wc- 

When the dominant component is found in the spectral compliance window, 
corroborating evidence of harmonic components at nf*,n = 2,3,... is verified. The 
decision rule is built on a 2-D observation space composed of the logarithm of the 
spectrum magnitude and the logarithm of the spectrum magnitude normalized by the 
median (see Section 4.3). Similar compliance windows can be derived in the 2-D case 
(see Figure 8). Consider the periodicity matrix decomposition 

V = Vdiag(r0,T1), V=[v0|vi], 

11 



with lyol = |vi| = 1. The spectral periodicity matrix U equals U = V~T, so that 
U = V-Tdiag(r0~1,r1

_1). Note also that Ui.Vj = 6itj, i,j = 0,1 since 
UTV = (V~T)TV = I. The spectral periodicity vectors u2- are orthogonal to their 
alternate spatial counterparts, since U;.Vj = 0 if i ^ j. Using U;.v,- = 1 and v,- = TjV,-, 
we get |ut-| = | cos(u,-, vt-)I"

1 rf1 = | sin(vi, v,-)|_1rfx,  with j = t, so that if we let 
ut- = üi£i, then & equals 

e,- = rf1|sin(v0,v1)|-
1, (3) 

where it was assumed in the previous section that det(v0, vx) ^ 0. The case where 
det(v0, Vi) = 0 consists of linear configurations in a 2-D domain, with a unique 
direction of replication, and one may write the gradient magnitude map as 

*(r) = ]£c(.)*£(r-nv), 
n 

for which 

*(f) = <7(.)X>(vTf-0, 
i 

which gives rise to impulsive lines orthogonal to the direction of v. In sum, the spectral 
signature offers clues to the spatial geometry (orientation and dimension) of the 
detected configuration, and can be used to determine the spatial orientations of the 
object configurations. Alternatively, if site model information is available, compliance 
windows can be derived to guide the detection process. Using geometrical 
considerations similar to the ones presented in the 1-D case, the following compliance 
(longitudinal and lateral) constraints may be inferred: 

1 r 1 

PÄÄ<ril,l*M<(iT5i'     ■ 
Ir^<r%|Sin(v„,v1)|<(r^]- (4) 

where /0, h,fJ,o, iii,e0, e1 are derived from the task at hand. How much is known about 
V depends on the context. The search strategy for detecting a compliant impulsive 
component makes use of various schemes depending on the available model information. 

If only the orientation direction of the object configuration is available, then the 
constraints in Equation (4) translate into radial search spaces on a half-plane 
along directions u0 and ul5 or alternatively into a search sector if an uncertainty 
on these directions is specified. 

If only the object dimensions are known, the search is conducted along annular 
rings, generated by a full 2TT revolution of the sets in Equation (4). 

Finally, if both dimensions and directions can be inferred from the site model or 
from the context, the search space reduces to annular sectors. 
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4.3 Detection 
Various factors can impair the detection process: The clutter noise component present 
across the spectral compliance window, poor imaging and illumination that lead to 
weak gradient magnitude, and inaccuracies in site and region boundary models. The 
factors interfering with the existence of a uniform critical region across experimental 
conditions are variations in viewing conditions and illumination. 

We designed a detection rule that tests the dominant component at the base and 
corresponding harmonic frequencies. This rule takes into account the spectrum 
magnitude \K(f*)\ associated with the maximum peak at /* within a compliance 
window. To keep critical/detection regions constant across viewing directions, the 
spectral estimates need to be normalized by the aspect ratio. The resulting normalized 
spectrum magnitude associated with the peak is denoted by Ka. The second element in 
our decision rule is the ratio of the spectrum magnitude over the median of this 
magnitude computed over the compliance window: Kr(f*) = \K(f)\/Kmeä., with Ämed 
denoting the "median" magnitude inside the spectral compliance window. The 
detection acceptance and rejection regions are designed over the 2-D observation vector 
Y whose components are the logarithms of these two measures, i.e., 
Y = ( ln(Ka),\n(Kr)) = (La,Lr). The harmonics nf* or nTf* are also checked for the 
presence of an impulsive component. A decision-theoretic technique used to determine 
the optimal critical region on a control set of images is described in detail in Section 5.6. 

4.4 Application 
After registration, the site model information is used in the newly acquired image. 
ROIs are delineated and image object dimensions are derived. Figure  9(a) shows an 
initial image, and Figure 9(b) shows the new image precisely registered to the site 
model. From the camera model, 3-D models of ROIs can be transformed and registered 
to the image plane. In Figure 9(c), roads, parking, and staging areas are delineated. 
The attentional mechanism and local object detection schemes are applied to the 
monitored areas highlighted in Figure 9(d). 

As previously explained, compliance window parameters are derived from context 
information. For example, if the task is convoy detection on roads, the average image 
vehicle length / taken on the image region covered by the road is first derived from the 
known vehicle model and the camera orientation parameters. For safety reasons, 
vehicles follow each other at distances greater than el, for some e > 0; an upper bound 
for /* is then given by 1/((1 + e)/). Similarly, vehicles following each other at too great 
distances are not considered to belong to convoys. The maximum distance between 
successive vehicles can then be expressed in terms of vehicle lengths /as (1 + //)/ with 
fi > e. This yields a lower bound 1/((1 + fi)l) for the dominant spectral component and 
for the minimum length. Similarly, when dealing with monitoring 2-D regions such as 
parking lots, partial or complete information can be derived from the site model about 
the longitudinal and lateral bounds lo, li, no, eo, /xi, ei as well as the orientation yielding 
the periodicity matrix. These correspond to vehicle dimensions as well as spacing 
between neighboring vehicles in parking lots. The various degrees to which this 
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information is known yields the specific search strategies described in the previous 
section. In the case of train detection, these constraints are even more precise, and can 
be readily derived from the types of trains being monitored (freight, passenger, etc.). 

The above detection scheme can be applied directly to convoy detection or the 
detection of full parking areas. Alternatively, the above mechanism can serve as a 
pre-processing attentional mechanism prior to the application of more computationally 
intensive detection and counting algorithms. We use it to cue a local vehicle detector. 
To this end, we infer the spatial positions of edges giving rise to the periodic structure 
determined through frequency domain analysis, referred to here as periodic loci, and 
thereafter, apply local object detection schemes to corroborate the presence and refine 
the count of objects at these positions. Let C denote the set of periodic loci. The local 
vehicle detector can then be applied to the reduced spatial window centered at these 
locations in C 

4.5    Experiments 
Our first experimental results were obtained using a set of 40 images from the 
RADIUS-MB2 series. While this is a modest test sample, these images are interesting 
since they offer an array of varying viewing and illumination conditions as well as 
activity scenarios. Figure 9(a) shows an original image (M17). In Figure 9(b), the site 
model is superimposed on the image. After registration of M17 (Chellappa et al, 1994), 
a selected number of delineated regions of interest (roads, parking areas, and staging 
areas) are derived from the camera external orientation parameters and the site model, 
as shown in Figure 9(c). Figure 9(d) shows the parking and road areas monitored in 
our experiment. The needed apparent image dimensions of monitored objects, as well 
as road and parking area boundaries and directions, are derived from the known site 
model and resected camera parameters for the image under analysis. 

In the 1-D detection case, directional derivatives are calculated on ROIs made up of 
ribbons. For roads, this direction is the direction of the tangent to the road; for 1-D 
parking areas, this direction is the dominant orientation of the parking area. 

For images MIO, M18, M20 and M33, the resulting detected active roads are highlighted 
in Figures 10(a), (b), (c), and (d). Detected active parking areas are highlighted in 
Figures 11(a), (b), (c), and (d) for images M10, Ml, M21 and Mil, respectively. The 
resulting set of periodic loci £ is shown in Figure 12(a). After application of the vehicle 
detector, the resulting detected vehicles are shown in Figure 12(b). Visual inspection 
shows that the results are consistent with the actual images. 

Detection and false alarm rates resulting from running the global activity detector on all 
or a subset of the 40 model board MB2 images are reported here for hand-tuned rules 
(results for learned decision rules are reported in Section 5.6). The detection of convoys 
is tested on some of these images using a tuned detection rule, yielding a compound 
non-detection probability of 0.10 and a false alarm probability of 0.16. The detection of 
active (full) parking lots on all the MB2 images yields a compound non-detection 
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probability of 0.07, and a false alarm probability of 0.17 for hand-tuned critical region 
boundaries. The breakdown of the non-detections and false alarms is provided for the 
MB2 images in Tables 1 and 2 for convoy detection and parking lot occupancy analysis. 

The previous result shows that the detection rule is not too sensitive to the varying 
illumination and viewing conditions present in the dataset. We wish to better 
characterize the sensitivity of the detection performance to misspecification of the 
object dimensions. To this end, the 3-D dimensions (width and length) of the vehicle 
were varied, and the compound detection and false alarms were computed on the set of 
test images. The results are reported in Section 5.6. 

For specific applications such as those described here, this method compares favorably 
with the direct application of symbolic recognition schemes. By using a global operator 
we can readily identify specific ROIs, while the complexity of this method is minimal 
compared to symbolic recognition. Delineation from known site models, computation of 
the gradient, and computation of the spectrum are of modest computational 
complexity. These combined operations take approximately 10 seconds for an image of 
size 1320 by 1035 on a SUN SparcStation™. 

The same process is carried out in 2-D image regions. The global analysis is applied to 
an image taken from the Ft. Hood image series shown in Figure 13. An enlarged area is 
shown in Figure 14 for which the gradient magnitude is computed. We show the 
corresponding edge map obtained by thresholding in Figure 15. This image exhibits 
two types of periodicities; one corresponds to the row periodicity, the second to the car 
periodicity. The "principal" direction is parallel to the spatial row periodicity direction. 
The vehicles detected by the local detector are shown in Figure 16. A contour plot of 
the spectrum with additional level sets is displayed in Figure 17. The base frequency 
corresponding to the vehicle periodicity is searched for along a direction orthogonal to 
the principal direction, since the image is a nadir view. This leads to a directional 
tolerance area whose boundaries are indicated in Figure 18. On the other hand, 
geometric constraints yield a compliance window in the form of an annular ring. The 
base frequency corresponding to the vehicle periodicity lies at the maximum of the 
spectrum in a compliance window equal to the intersection of the annular ring and the 
angular sector, as shown in Figure 18. For this experiment e = 1.2 and fi = 5 were 
chosen. 

Inferring the orientations is interesting both for registration and site model construction 
purposes. If these orientations are included in the site model, this information allows 
the refinement of camera exterior orientation parameters. If this information is not 
already contained in the site model, it is relevant since it may be used as a site model 
construction tool. The principal and secondary directions, inferred from searching for 
the maximum and second largest peaks in an annular search area (itself determined 
from vehicle dimension constraints), leads to spatial orientations that are correct to 
within 4 degrees when compared to the orientations measured from the actual images. 
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5.    SENSITIVITY ANALYSIS AND LEARNING 
Part of our work has focused on providing sensitivity analysis and learning strategies 
for the movable object detection modules. In particular, we have considered the 
sensitivity of the tuning parameters that characterize the vehicle detection and 
counting algorithms that we have integrated into the RADIUS testbed. 

5.1 Procedural Approach 
Robustness as well as the ability to work in an unsupervised mode are two desirable 
features for the algorithms developed in the cont 
text of the RADIUS project. A more modest yet still important goal that we have 
pursued involves the problem of automatic parameter tuning. Manual tuning is often 
neither a desirable nor a practical option because of the large amount and diversity of 
imagery typically used in exploitation. The need for limiting the number of tuning 
parameters is further justified by the fact that IAs should not be required to deal with 
low-level parameter tuning. 

While the problem of automatic parameter selection will be partially addressed by the 
use of a rule-based system such as the HUB (Strat, 1995), we are addressing the 
problem of limiting or completely eliminating the number of tuning parameters using 
the following strategy. Preliminary sensitivity analysis is used to identify the 
parameters to which the algorithm is the most sensitive. A compound measure of 
sensitivity is chosen as the expected risk function and is computed empirically over a 
set of test sites. The parameters to which the algorithm is the least sensitive are 
"frozen" to their optimal values (off-line parameter optimization). We provide on-line 
training tools for the remaining parameters on which performance depends the most. 

The approaches used for parameter training and optimization are set in a classic 
hypothesis testing framework using Bayesian or Neyman-Pearson strategies. 

A related issue is the assessment of the sensitivity of the algorithms to misspecification 
of model parameters. This problem is important for model-based exploitation and some 
initial results are reported here. 

5.2 Sensitivity to Tuning Parameters 
The sensitivity of the vehicle detection and counting module with respect to the edge 
detection step has been extensively studied. Specifically, we characterize its sensitivity 
to the Canny parameters: mask size and low and high thresholds. We show in Tables 3, 
4, and 5 the detection and false positive rates for varying values of the Canny mask size 
as well as the low and high thresholds, for detection and counting on the parking lots in 
Ft. Hood and Denver TEC2. The values reported in Tables 4 and 5 correspond to the 
false positive rate1 and detection probability optimized over the mask size. In turn, the 

1For vehicle detection and counting, a false positive rate is computed instead of a probability of false 
alarm; this rate is the ratio of the number of wrongly detected vehicles to the total number of detected 
vehicles. This measure of false alarm differs from the probability of false alarm. An alternate false 
positive rate often used is the rate per area processed. For detection of convoys, the usual probability 
of false alarm is used instead. 
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low and high thresholds are set to their optimal values (in the sense described in 
Section 5.4) to produce the false positive rate and detection probability as functions of 
mask size in Table 3. 
Next we characterize sensitivity to the overlap threshold. Table 6 shows the false 
positive rate and detection probability. From these experiments we compute the 
empirical expected risk E{R(d)} including both false alarm and non-detection rates. 
These are presented in Sections 5.4 and  5.6. From this empirical risk it can be inferred 
that the variation in detection performance is smaller for the Canny parameters when 
they vary within their operational limits, while the performance varies significantly 
with the overlap threshold. For the former parameters we need to derive optimal 
estimates; for the latter parameter, we need to provide a training tool. 

5.3    Detection and Training 
On-line parameter training and off-line parameter optimization are set in a hypothesis 
testing framework. Let Ho and Hi correspond to the two hypotheses (absent/present), 

Hi : P(Y\i) = Pi(Y). 

The acceptance and rejection regions are designed over some observation space O. The 
observation vector Y in the case of the vehicle detector is simply the overlap threshold. 
In the case of the configuration detector, it is composed of two spectral measures 
described in Section 5.6. 

A decision rule d is simply given by d(Y) — JTJ(Y), with Xn the indicator function on 
the acceptance region 11. The acceptance region admits a parametric form 

n = 1lv = {Ysuch that 6(Y; V) > 0}, 

where the form of the critical/acceptance regions can be inferred from the distributions 
satisfied by the observation vector under either hypothesis. The design of the detection 
rule is set up according to the following two strategies: 

• (A) Bayesian strategy: Find V* = &Tgm.in(E{R(d)}). This strategy consists of 
minimizing the expected risk (Poor, 1988) where the cost factors C/0 and Cnd are 
chosen to balance the cost associated with a false alarm and a non-detection: 

E{R(d)} = CndPo{Kv).Tro + CfaPi{Tlv
c)7cu 

where PQ{R) and Pi(TZvc) are the false alarm and non-detection probabilities, and 
7T; are the priors. 

• (B) Neyman-Pearson strategy: Find V* = argmax(Pi(i?)) subject to Po{R) < a. 

These above strategies are used as follows: 

• Canny Parameter Optimization: For determining optimal Canny parameters 
for vehicle detection we use (A) where V includes the mask size and threshold 
parameters and the empirical expected risk is computed over a training set. 
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• Overlap Threshold Training: For the overlap threshold in vehicle detection we 
use (B) where V is the threshold and Pi(Hv

e) and PQ{TIV) are computed 
empirically from a user-provided reference patch. 

• Convoy Detection Training: For determining the acceptance region for 
detection we use (A) where V parameterizes the region boundary in the 
observation space and E{.} is empirically computed over a training set. 

5.4 Parameter Training and Optimization for the Detection 
and Counting Module 

For off-line Canny parameter optimization we use a Bayesian strategy (A) with the 
expected risk computed over the training set. We choose Cnd = 0.50 and C/B = 0.50 
and we assume equal priors, which is equivalent to a minimum probability of error 
scheme. The empirical value of E{R(d)} computed over the range of Canny parameters 
is shown as a function of the Canny threshold and mask sizes in Figures 19 and 20. The 
Canny parameters are set off-line to the values minimizing the expected risk. These 
values were found to be 5 for the mask size and (200,400) for the minimum and 
maximum thresholds. 

The expected risk computed for varying values of the overlap threshold shows that the 
performance depends more closely on this parameter (Figure 21). For on-line overlap 
threshold training, we use strategy (B). Empirical detection and false alarm probability 
are derived from predetermined reference patches. For each newly acquired image, the 
overlap threshold is automatically computed from the empirical probabilities derived 
from the reference patches. Denote by Pi(ftv) = r(Pi(7lvc)) the empirical ROC curve 
derived by varying the overlap threshold V; then we want to find V* satisfying 
V* = argmax(Pi(7£v)) subject to 

• p0(nv) < a, 

• ^ >8. 

The second condition ensures that the slope of the ROC curve for the given value of V 
is not too small, i.e., that an increase in false alarm probability can be traded for a 
significant increase in detection probability. Several scenarios are considered in the next 
section for the selection of reference patches. 

5.5 Selection of Reference Patches for the Detection and 
Counting Algorithm 

When a new image is acquired, the overlap threshold is automatically "calibrated" using 
reference patches as explained above. In certain situations, reference patches with their 
associated ground truth can be determined by inspection, and the ground truth can be 
represented as site features in the site model. This is possible when we can identify 
patches in the parking lot that are known to be always empty (such as passageways, 
parking lot exits, etc.), or always full (areas located near building entrances). If such 
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patches cannot be reliably identified, an alternate procedure consists of using fixed 
structures such as buildings for calibrating the overlap threshold. Lastly, a more 
interactive method would consist of letting the IA inspect and validate the reference 
patches over a subset of the images to be processed before initiating a batch procedure. 

5.6 Parameter Training for Convoy Detection 
The convoy detection rule tests the dominant spectral component within a compliance 
window at the base and corresponding harmonic frequencies, and takes into account the 
normalized spectrum magnitude Ka associated with the maximum peak at /* within a 
compliance window and the ratio of the spectrum magnitude to the median Kmed of 
this magnitude computed over the compliance window. Specifically, the components of 
Y, the 2-D observation vector, are the logarithms of these two measures, i.e., 
Y = (ln(Ka),ln(Kr)) = (La,Lr). Let H0 and Hi correspond to the two hypotheses, 
with Ho the hypothesis that no peak is present; the decision rule is simply 
d(La,Lr) — lRv(La,Lr). We use a Bayesian strategy for deriving the acceptance region 
from a training set of images. The acceptance region boundary is parameterized by 
vector V and chosen as 

R = RV = {(La, Lr), such that b(La, Lr; V) > 0}. 

Assume that the joint conditional probability distributions on Y = (La,Lr) are 
Gaussian, i.e., Hi : P(Y\i) ~ iV(m;,£;),e = 0,1; then the log-likelihood ratio function 
is a quadratic function in Y(Fukunaga, 1990), i.e. 
(Y — mi)*!!;"1 (Y — mi) — (Y — m0)'So1(Y — mo). We assume dissimilar covariances2 

for which the boundary equation &(.,.;.) = 0 is a conic section. The acceptance region 
is determined by finding V*, which minimizes the expected value of the conditional risk 
computed over the training set, i.e., V* = argmin(^{i?v(<^)})- Ten of the forty MB2 
images were chosen as a training set, and &(.,.;.) was assumed to be an elliptic 
boundary. The parameters of this elliptic boundary were optimized on the set of control 
images3. The resulting boundary for Cnd = 0.55 and Cja = 0.45 is shown in Figure 22. 
When 10 of the 40 images were chosen as a training set, the compound detection 
performance when compared to the hand-tuned performance yielded a significantly 
better false alarm probability, 0.11, and a comparable non-detection probability of 0.08 
(see Table 7). These results can be contrasted to those reported in Table 2. 

5.7 Sensitivity to Misspecification of Model Parameters 
We characterize the sensitivity of parking lot occupancy detection to misspecification of 
the model parameters. The 3-D dimensions (width and length) of the vehicle are 
varied, and the detection and false alarm probabilities are computed on the set of test 
images. The resulting probabilities are displayed as functions of these dimensions in 

2If the covariance matrices are equal, the boundary region is a hyperplane. If they are dissimilar, the 
boundary is elliptic, parabolic, or hyperbolic, depending on the covariance matrices. 

3The expected value E{R(d)}, computed over the training set, is a noisy function of V, in part due 
to the modest size of the training set. V* is determined by using the Nelder-Mead Simplex algorithm 
(Neider and Mead, 1965). This function is non-convex and, therefore, the simplex algorithm is not 
guaranteed to converge. Furthermore, the minimum is not unique. 
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Figure 23 for detection of active parking lots. In Figure 23, the upper surface represents 
the probability of detection as a function of the 3-D width W and length L. The lower 
surface represents the false alarm probability4. In this figure we see that the resulting 
performance is not too sensitive to a reasonable variation in size. Figure 24 shows the 
resulting expected risk computed for the above Cnd and C/o. The situation is different 
for convoy detection, as seen from the simulation results in Figure 25. In this case, as 
the values deviate from their optimal specifications (the middle of the grid), 
performance degrades. As W and L increase, the false alarm probability decreases along 
with the detection probability. This highlights the importance of context as well as the 
adequate specification of model parameters for this particular application. 

5.8    Qualitative Assessment of the Vehicle Detector 
Performance and the HUB 

As a byproduct of this sensitivity analysis, we can infer the conditions for which the 
module works as expected, and relate these to the context in which the image was 
taken. This information can be encoded into the HUB as Prolog rules guiding the 
application of specific algorithms (Strat, 1995) according to image quality and context. 
Additional qualitative conditions for the proper application of the vehicle detector have 
been determined. 

Based on multiple experiments carried out on the Ft. Hood and Denver images, we 
conclude that the current vehicle detector modules should be used with caution when 
any of the following conditions are present: 

• Poor contrast 

• 

• 

• 

Very cluttered environment or heterogeneous objects (such as some Ft. Hood 
storage areas) 

Vehicles of greatly varying orientations in a parking lot when only one orientation 
was specified 

Low image resolution such that the image dimension of a vehicle is < 6 or 7 pixels 

• Presence of water pools or oil marks. 

These conditions could be coded into Prolog rules in an RCDE HUB subsystem that 
could control the appropriate application of detection algorithms. 

Situations where the width is greater than the length constitute a misspecification by TT/2 of the 
actual vehicle orientation. 
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6.    SYSTEM INTEGRATION OF THE VEHICLE 
DETECTION AND COUNTING MODULE 

6.1    Exploitation Module 
The RCDE platform implements basic photogrammetric procedures and low-level image 
processing and manipulation functions, and it provides a common development 
environment on which RADIUS-related algorithms can be developed and tested. It also 
provides a framework from which the RADIUS testbed system is derived. The vehicle 
detection and counting module presented here has been integrated into the RADIUS 
testbed and the remaining modules have been developed around the RCDE system. 

A typical exploitation scenario making use of the RCDE basic functionalities is 
conducted as follows. A site model containing permanent objects is constructed. The 
prerequisites of the site model construction are the availability of several partially 
overlapping images of the same site. Multiple views of the site objects are necessary to 
disambiguate the object positions and dimensions. When images are simultaneously 
displayed, a shared 3-D local world coordinate system is defined for all images, and 
registration is carried out. As previously mentioned, in the usual photogrammetric 
applications, images are provided with a set of interior as well as exterior orientation 
parameters with associated covariance matrices. These are usually supplied in a TEC 
header format. These initial orientation parameters are refined by using our registration 
methods along with RCDE-supplied resection tools, after control point objects have 
been defined (these are points whose 3-D positions are known). Control points are used 
along with their identified image positions to refine camera orientation. Conjugate 
points are determined, either manually, or using one of our automated procedures. 
Single or multiple image resection is then accomplished. 

After the image has been registered to a common local vertical coordinate system, site 
construction can be initiated. Three-dimensional generic objects are selected, created, 
and modified. Objects of primary importance in our case are roads, buildings, 
delineated training areas, and parking lots. Objects are manipulated and modified 
interactively by the operator, or defined through dialog windows. This site-generation 
procedure is carried out until a satisfactory site model has been constructed from all 
viewpoints. 

When a new image is acquired, it is registered to the existing site model, and is 
thereupon exploited. Site models are not static. While the detection algorithms 
reported here exploit site model information to detect changes, they can be used, in 
turn, to verify and detect discrepancies, and therefore, to refine and update site model 
information. These algorithms are not indiscriminately applied to all incoming images 
and all areas. Instead, the IA specifies which areas should undergo special scrutiny. 

One operational procedure of particular importance in driving the exploitation of 
images is determined by the concept of a quick look (QL) (Bailey et al., 1994). In the 
QL mode, only small areas (usually corresponding to functional regions) are processed 
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in batch over multiple images; historical comparisons are then carried out to determine 
trends and evolutions. Only a limited number of areas in the site are exploited; usually 
small changes in these areas are significant. Changes must, however, be detected in a 
timely fashion over large sets of images. Active QL areas are then prioritized for further 
and finer exploitation. 

In the QL scenario, areas supporting the presence of convoys are brought to the 
attention of the IA. The IA may then trigger a specialized vehicle detector module, 
according to the type of ROI (road or parking). Exact vehicle counts are then reported 
to the analyst. 

6.2    Integration Details 
6.2.1 Assessing Operational Requirements for the Vehicle Detector 

The vehicle detection and counting algorithm has been fully integrated into the RCDE 
platform. It was first implemented in C, and later re-implemented in C++. The RCDE 
platform is instead implemented in Lucid Lisp. Part of the vehicle detection process, 
consisting mostly of the interface, is implemented in Lisp. The Lisp/C interface of the 
RCDE enables inter-process communication between these two components. The 
integrated vehicle detector has been tested by several institutions, including GE and 
Lockheed-Martin Management and Data Systems. Its interface is currently being 
tailored to the specific needs of IAs. 

Figure 26 shows an example of a dialog window for the integrated implementation of 
the vehicle detector module. After vehicles have been detected, the result is stored in 
the database for subsequent inspection. 
The vehicle detector integrated into the RADIUS testbed currently includes the 
following features: The vehicle detector is accessible either stand-alone or under the 
Quick Look (QL) menus. It allows for dual specification of the vehicle dimensions: 2-D 
or 3-D. It enables a two-way interactive specification of the dimensions: Either 
graphically or by using sliding bars. The user can create a sample image vehicle, 
modify its dimensions, and then use it as a prototype. The user can modify its 3-D 
dimensions directly. The sample vehicle size is then modified accordingly. Alternatively, 
the user can modify the sample vehicle size, and the 3-D dimensions are modified 
accordingly. The detector accepts Fast-Block Interpolation Projection (FBIP) format 
and lazy images. It also is equipped with a ground truth verifier. It has been modified 
to accommodate some new function definitions in RCDE 3.0. It can handle batch 
processing in QL menus. 

6.2.2 Integration into the QL Menus 

Menus were modified so as to reflect recommendations made by NEL analysts. The 
detector was finally modified so as to allow operation under the newly designed LM QL 
menus, and to allow its application over large image databases in batch modes. 
Examples of QL menus are shown in Figure 27. 
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6.2.3    An Automatic Ground Truth Verifier 

Performance statistics can be obtained by inspection. We have implemented an 
automatic ground-truthing tool to allow for the automatic assessment of the statistical 
performance of our vehicle detector. It is based on a tool originally developed by GE. 
This is a preliminary developer's tool allowing us to perform a fast evaluation of the 
results when a change in the vehicle detection scheme has been made. As a first 
approximation, the detection criterion declares a correct detection whenever the center 
of the detected vehicle is within the boundaries of a specified ground truth box. This 
rule will later be refined so as to dissociate the detection rate and the quality of the 
localization. The module allows for saving previous detection results and ground truth 
as site model objects. This is the preferred method for specifying the ground truth, 
since it can be reloaded and more easily exchanged. 
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7.    CONCLUSIONS 
While the movable object monitoring tasks addressed here were of limited scope, the 
problem has been addressed in all its facets. Our work has spanned concept design, 
implementation, transition to the RCDE and testbed platform, inclusion in QL 
operation, constant update and improvement of the algorithms, and finally, 
development of learning modules as well as sensitivity analysis. We believe this work, 
along with that of other groups involved in RADIUS, can serve as a preliminary model 
of how the transitioning of mature algorithms can be combined with the development of 
novel ideas. 

The other accomplishment of this project has been to show that satisfactory reliability 
of algorithms can be obtained using context and model information. Future should be 
characterized by an increased emphasis on contextual information as well as the 
inclusion of temporal reasoning. 
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(c) New Ft. Hood image d) Detected vehicles 

Figure 1: Model-supported vehicle detection results on Ft. Hood images, (a) A parking 
lot is delineated in an old Ft. Hood image, (b) The detected vehicles, (c) The same 
parking lot on a new Ft. Hood image, (d) The newly detected vehicles support change 
detection and negation. 
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(c) Denver parking lots 5,6 and ? 

Figure 2: Model-supported vehicle detection on Denver site parking lots 1,2,3,5,6, and 7. 
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(c) Ft. Hood image 3 (d) Ft. Hood image 3 (detail) 

(e) New Ft. Hood image fhn711 

Figure 3: Vehicle detection on roads for Ft. Hood images. 
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Figure 4: Arbitrary configuration. Figure 5: Circular configuration. 

30 



\   \   \   \ A A ,\ /   /   / 
\  \  \<\ A * \ >'   s   >' , 

'' x x y\F 9A\/'\ A' s- 

Figure 6: Canonical configuration representation. 
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Figure 7: Periodic configurations. 
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Figure 8: Compliance window. 
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{&) An Image to be exploited (b) Image registered to the site model 

Figure 9: Site model and ROIs. 
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(a) Active roads in MIO (b) Active roads in MIS 

(c) Active roads in M20 (d) Active roads in M33 
Figure 10: Convoy detection on M10, M18, M20, M33. 
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(b) Active parking areas in Ml 

(c) Active parking areas in M21 (d) Active parking areas in Mil 
Figure 11: Parking occupancy on Ml, M21, Mil. 
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(a) Back-projected locations (b) Detected vehicles 
Figure 12: Local vehicle detection. 

Figure 13: Ft. Hood image3. 
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Figure 1.4: Region of interest. 

Figure 15: Edge map. 
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Figure 16: Detected vehicles. 
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Figure 1 7: 2-D FT peak contc ours. Figure 18: Search in compliance window. 
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High Threshold 300     100 Low Threshold 

Figure 19: Vehicle detection: Expected risk as a function of Canny thresholds evaluated 
over the Ft. Hood and Denver training sets. 
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Figure 20: Vehicle detection: Expected risk as a function of Canny mask size evaluated 
over the Ft. Hood and Denver training sets. 
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Figure 21: Vehicle detection: Expected risk as a function of overlap threshold evaluated 
over the Ft. Hood and Denver training sets. 

Figure 22: Decision region obtained from training images. Active parking lots are indi- 
cated by 'o's and inactive ones by '+'s in the (Lr, La) plane. 
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Figure 23: Sensitivity of the detection of active parking lots to misspecification of vehicle 
dimensions. 

Figure 24: Risk function computed on all images for active parking lot detection. 
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Figure 25: Sensitivity of convoy detection to misspecification of vehicle dimensions. 
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Figure 26: Integrated vehicle detector. 
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(a) Trigger menu (b) Task menu (c) Results window 

Figure 27: Task and trigger, and result windows under the QL menus. 
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Table 1: Detection results on roads. 

Image Total Active Missed False 
No. Visible Roads Roads Positive 
3 8 0 0 1 
4 6 1 0 0 
5 7 1 1 0 
7 5 0 0 0 
8 11 0 0 3 
10 10 3 0 0 
11 9 0 0 0 
13 13 0 0 0 
16 11 4 0 5 
17 11 0 0 1 
18 12 4 1 0 
20 7 3 0 0 
21 9 0 0 0 
26 9 3 0 3 
27 12 0 0 0 
32 12 5 1 0 
37 9 2 1 0 
40 10 5 1 2 
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Table 2: Detection of active parking areas: Hand-tuned rule. 

Image Total Active Missed False Image Total Active Missed False 
No. Visible Areas Areas Positives No. Visible Areas Areas Positives 
1 4 2 0 0 21 4 4 0 0 
2 3 1 0 0 22 4 4 0 0 
3 2 2 0 0 23 2 0 0 1 
4 2 0 0 0 24 2 2 0 0 
5 2 0 0 0 25 2 2 2 0 
6 2 0 0 0 26 3 1 0 0 
7 2 0 0 0 27 4 4 1 0 
8 2 2 0 0 28 2 0 0 0 
9 2 2 1 0 29 4 2 0 1 
10 3 1 0 0 30 4 2 0 1 
11 4 4 0 0 31 4 4 0 0 
12 4 4 0 0 32 2 1 0 1 
13 3 3 0 0 33 4 2 0 0 
14 4 4 0 0 34 3 1 0 2 
15 3 1 0 0 35 4 4 0 0 
16 4 2 0 0 36 2 0 0 0 
17 4 2 0 1 37 3 1 0 0 
18 4 2 0 2 38 2 0 0 0 
19 4 2 0 0 39 4 2 1 0 
20 2 0 0 0 40 3 o 1 0 0 

Table 3: Sensitivity to Canny parameters: Detection performance vs. mask size. 

Mask size 
3 4 5 6 7 8 9 10 

TEC2-pl Detection probability 0.78 0.79 0.79 0.77 0.74 0.73 0.72 0.74 
False positive rate 0.06 0.11 0.08 0.06 0.07 0.08 0.10 0.03 

TEC2-p2 Detection probability 0.75 0.81 0.81 0.75 0.71 0.77 0.75 0.64 
False positive rate 0.05 0.01 0.03 0.07 0.07 0.01 0.03 0.00 

TEC2-p3 Detection probability 0.88 0.90 0.90 0.92 0.88 0.80 0.82 0.90 
False positive rate 0.23 0.31 0.23 0.25 0.33 0.25 0.25 0.17 

TEC2-p4 Detection probability 0.75 0.75 0.78 0.76 0.81 0.82 0.78 0.77 
False positive rate 0.10 0.10 0.10 0.11 0.08 0.06 0.06 0.06 

TEC2-p5 Detection probability 0.78 0.73 0.76 0.75 0.76 0.76 0.76 0.72 
False positive rate 0.05 0.07 0.06 0.06 0.06 0.07 0.06 0.04 

TEC2-p6 Detection probability 0.74 0.75 0.78 0.74 0.77 0.75 0.71 0.74 
False positive rate 0.08 0.06 0.04 0.03 0.04 0.06 0.08 0.06 

Ft. Hood Detection probability 0.90 0.92 0.92 0.95 0.95 0.90 0.90 0.92 
False positive rate 0.04 0.02 0.04 0.02 0.02 0.04 0.04 0.04 
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Table 4: Sensitivity to Canny parameters: Detection probability vs. threshold values. 

Low threshold 
100 150 200 250 300 

TEC2-pl detection probability High threshold 

300 0.79 0.81 0.81 0.75 0.83 
350 0.79 0.81 0.79 0.79 0.82 
400 0.82 0.79 0.79 0.77 0.78 
450 0.79 0.81 0.81 0.81 0.77 
500 0.78 0.79 0.77 0.74 0.77 

TEC2-p2 detection probability High threshold 

300 0.92 0.86 0.83 0.79 0.75 
350 0.84 0.86 0.81 0.79 0.73 
400 0.79 0.73 0.81 0.79 0.67 
450 0.77 0.71 0.69 0.69 0.60 
500 0.67 0.62 0.52 0.50 0.39 

TEC2-p3 detection probability High threshold 

300 0.90 0.88 0.88 0.86 0.78 
350 0.90 0.90 0.92 0.88 0.78 
400 0.90 0.90 0.92 0.92 0.88 
450 0.84 0.94 0.90 0.92 0.82 
500 0.92 0.88 0.88 0.84 0.76 

TEC2-p4 detection probability High threshold 

300 0.82 0.80 0.78 0.78 0.78 
350 0.81 0.78 0.79 0.77 0.77 
400 0.76 0.77 0.78 0.74 0.70 
450 0.76 0.77 0.74 0.70 0.69 
500 0.77 0.77 0.70 0.68 0.63 

TEC2-p5 detection probability High threshold 

300 0.80 0.78 0.78 0.78 0.79 
350 0.76 0.76 0.78 0.75 0.77 
400 0.77 0.78 0.80 0.78 0.76 
450 0.80 0.81 0.81 0.80 0.77 
500 0.79 0.80 0.79 0.78 0.78 

TEC2-p6 detection probability High threshold 

300 0.78 0.76 0.73 0.69 0.70 
350 0.71 0.74 0.72 0.72 0.72 
400 0.75 0.73 0.72 0.70 0.70 
450 0.76 0.72 0.75 0.70 0.69 
500 0.75 0.70 0.67 0.64 0.63 

Ft. Hood detection probability High threshold 

300 0.92 0.92 0.92 0.90 0.90 
350 0.95 0.95 0.92 0.90 0.88 
400 0.92 0.97 0.95 0.92 0.92 
450 0.95 0.95 0.95 0.95 0.95 
500 0.95 0.97 0.97 0.95 0.95 
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Table 5: Sensitivity to Canny parameters: False positive rate vs. threshold values. 

Low threshold 
100 150 200 250 300 

TEC2-pl false positive rate High threshold 

300 0.16 0.16 0.15 0.16 0.13 
350 0.15 0.15 0.13 0.12 0.10 
400 0.10 0.10 0.08 0.10 0.08 
450 0.13 0.10 0.07 0.06 0.05 
500 0.08 0.08 0.07 0.10 0.08 

TEC2-p2 false positive rate High threshold 

300 0.30 0.26 0.18 0.15 0.15 
350 0.16 0.13 0.07 0.05 0.09 
400 0.07 0.11 0.01 0.00 0.05 
450 0.05 0.05 0.05 0.05 0.05 
500 0.01 0.03 0.07 0.03 0.00 

TEC2-p3 false positive rate High threshold 

300 0.49 0.41 0.39 0.37 0.35 
350 0.37 0.33 0.27 0.29 0.25 
400 0.35 0.27 0.25 0.25 0.25 
450 0.27 0.27 0.19 0.17 0.11 
500 0.13 0.19 0.13 0.13 0.09 

TEC2-p4 false positive rate High threshold 

300 0.06 0.08 0.06 0.07 0.08 
350 0.04 0.04 0.05 0.05 0.04 
400 0.08 0.08 0.08 0.06 0.10 
450 0.05 0.04 0.04 0.07 0.06 
500 0.07 0.06 0.07 0.08 0.07 

TEC2-p5 false positive rate High threshold 

300 0.09 0.09 0.10 0.10 0.10 
350 0.08 0.08 0.08 0.09 0.07 
400 0.07 0.07 0.04 0.06 0.06 
450 0.06 0.04 0.07 0.07 0.08 
500 0.09 0.08 0.08 0.07 0.04 

TEC2-p6 false positive rate High threshold 

300 0.04 0.06 0.03 0.04 0.05 
350 0.08 0.04 0.04 0.04 0.03 
400 0.03 0.03 0.03 0.02 0.04 
450 0.03 0.04 0.03 0.01 0.01 
500 0.04 0.03 0.02 0.03 0.03 

Ft. Hood false positive rate High threshold 

300 0.04 0.04 0.02 0.04 0.04 
350 0.04 0.02 0.02 0.02 0.02 
400 0.07 0.02 0.02 0.04 0.04 
450 0.02 0.00 0.00 0.00 0.00 
500 0.00 0.00 0.00 0.04 0.04 
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Table 6: Sensitivity to overlap threshold: Detection performance vs. threshold. 

Threshold 
0.3 0.4 0.5 0.6 0.7 0.8 

TEC2-pl Detection probability 0.84 0.83 0.82 0.81 0.75 0.54 
False positive rate 0.29 0.21 0.10 0.04 0.01 0.02 

TEC2-p2 Detection probability 0.86 0.81 0.71 0.71 0.62 0.50 
False positive rate 0.08 0.04 0.07 0.05 0.02 0.00 

TEC2-p3 Detection probability 0.90 0.90 0.86 0.86 0.82 0.76 
False positive rate 0.34 0.24 0.22 0.18 0.12 0.02 

TEC2-p4 Detection probability 0.81 0.81 0.74 0.73 0.69 0.61 
False positive rate 0.18 0.09 0.11 0.09 0.08 0.06 

TEC2-p5 Detection probability 0.78 0.76 0.74 0.72 0.70 0.60 
False positive rate 0.12 0.11 0.09 0.07 0.07 0.06 

TEC2-p6 Detection probability 0.78 0.82 0.72 0.72 0.64 0.54 
False positive rate 0.13 0.06 0.04 0.02 0.02 0.02 

Ft. Hood Detection probability 0.88 0.88 0.90 0.90 0.69 0.45 
False positive rate 0.26 0.15 0.07 0.05 0.06 0.09 

Table 7: Detection of active parking areas: Learned rule. 

Image Total Active Missed False Image Total Active Missed False 
No. Visible Areas Areas Positive No. Visible Areas Areas Positive 
1 4 2 0 0 21 4 4 0 0 
2 3 1 0 0 22 4 4 0 0 
3 2 2 0 0 23 2 0 0 0 
4 2 0 0 0 24 2 2 0 0 
5 2 0 0 0 25 2 2 2 0 
6 2 0 0 0 26 3 1 0 0 
7 2 0 0 0 27 4 4 0 0 
8 2 2 1 0 28 2 0 0 0 
9 2 2 0 0 29 4 2 0 0 
10 3 1 0 0 30 4 2 0 0 
11 4 4 0 0 31 4 4 0 0 
12 4 4 0 0 32 2 1 0 0 
13 3 3 0 0 33 4 2 0 0 
14 4 4 0 0 34 3 1 0 0 
15 3 1 0 0 35 4 4 0 0 
16 4 2 0 0 36 2 0 0 0 
17 4 2 0 1 37 3 1 0 0 
18 4 2 0 2 38 2 0 0 0 
19 4 2 2 0 39 4 2 1 0 
20 2 0 0 0 40 3 0 0 0 
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